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Abstract

Choice-based conjoint analysis is an essential tool for learning the marginal ef-
fects of multidimensional explanatory features on preferences. However, existing
marginal effect models rely on either non-parametric estimators that generalize
poorly to individualized effects, or linear latent utility that completely ignores
possible high-order interactions. We introduce Gaussian process conjoint analysis
(GPCA) for learning marginal effects from observed choices as the first-order deriva-
tives of the unknown systems. We also propose Gaussian mixture approximation
for the predictive distributions of marginal effects that facilitates downstream tasks
such as adaptive experimentation. Through both synthetic and real data, we show
GPCA achieves more precise estimation of marginal effects and higher efficiency
of effect estimation using adaptive experimentation.

1 Introduction

Understanding the relationship between targeted outcomes and features in survey experiments is
fundamental in many disciplines such as social science [1–3], human-computer interaction [4, 5] and
marketing research [6–8]. These associations are often captured by marginal effect, defined as the
change in predicted outcomes resulting from changes in features. Depending on the type of attributes,
marginal effects could either be computed as the discrete change in outcomes for categorical attributes
or infinitesimal margins for continuous attributes. In survey experiments, marginal effects are often
learned using the choice-based conjoint experiments which present a series of profile pairs at varying
attribute values so as to compare the difference in averaged outcomes [6]. For example, researchers
alternate background characteristics to study bias towards immigrants, and system designers change
interface setups to improve click-through rates of their new web interface.

However, learning marginal effects from conjoint analysis encounters several challenges. First,
effects of a single attribute may be heterogeneous when interacting with other attributes. To learn
possible heterogeneous effects caused by high-order interactions, existing methods usually rely on
stacking multiple attributes in a difference-in-different style that makes estimation of interaction
effects involving more attributes extremely complicated [1, 2]. Alternatively, marginal effects may
also be captured by the first-order derivatives of attributes w.r.t to the preference outcomes through a
latent utility function. However, previous work typically depend on linear models such as support
vector machine to learn partial utilities that overlooks possible interactions in the feature space [8–11].

Second, the multi-dimensional nature in conjoint experiments may lead to small-sample biases in
effect estimation, as common randomization design would inevitably split sample sizes on each level
of attributes. Hence, adaptive experimentation may be needed for acquiring next pairs of profiles
when querying of unknown preferences is expensive. By utilizing prior responses and maintaining a
belief model of the system, adaptive experimentation could balance between exploiting attributes that
are more crucial to the preference and exploring attributes that the model is uncertain about.
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In this work, we study the problem of marginal effect estimation in choice-based conjoint analysis and
propose Gaussian process conjoint analysis (GPCA) that automatically learns high-order interactions
by using the preference learning framework. We derive marginal effects using first-order derivatives
of Gaussian process learned from observed preferences, and approximate the distributions of marginal
effects via Gaussian mixture models. By building a predictive model of the latent system, GPCA
could also facilitate adaptive experimentation such as Bayesian active learning by disagreement to
accelerate effect estimation. As shown in the simulated experiments, GPCA is able to achieve more
precise estimation of marginal effects than other non-parametric and parametric methods. Finally, we
apply GPCA to two real-world online experiments: learning citizens’ preferences across presidential
candidates and examining attitudes toward immigrants.

2 Related work

Conjoint analysis. Originally introduced as a marketing tool [6, 7], conjoint analysis has been
used for learning multi-dimensional treatment effects using non-parametric estimators in quantitative
research [1, 2] or eliciting user preferences in recommendation system via parametric utility functions
[10, 12]. Hainmueller et al. [1] proposed a difference-in-difference interaction effect estimator for
eliciting preferences from multi-dimensional choices in survey experiments, where the inner and
outer differences come from the target and interacted attributes. Subsequently, Egami and Imai
[2] proposed a new effect estimator in factorial experiments that does not depend on the choice of
baseline conditions and generalizes better for higher-order interaction effects. However, these work
focus on discrete attributes and have to categorize continuous attributes into distinct subgroups that
are subject to categorization. Alternatively, Chapelle and Harchaoui [10] introduced a generalized
logistic approach by learning a parametric latent utility and explaining observed preferences via a
softmax function. Similar utility-based methods include support vector machines [9, 8, 11], Gaussian
processes [13, 12, 14–16] and decision trees [17]. However, these preference learning methods
emphasize learning the most preferred recommendations through latent utilities of low interpretability,
rather than estimation of marginal effects that explains the relation between attributes and outcomes.

Marginal effects. Marginal effects was studied in economics for measuring the responsiveness of
economic variables by the concept of elasticity [18], for instance, how the percentage of demand
quantity falls due to percentage of change in price. Hence, marginal effects are often used for
understanding transformed features in regression models [19] or examining heterogeneous association
between feature and outcomes [20]. Another stream of work focus on using marginal effects for
machine learning model interpretability. Silva Filho et al. [21] provided a feature importance method
for interpreting classification models based on marginal local effects. Merz et al. [22] proposed a
marginal attribution method by conditioning on quantiles for analyzing global gradients in deep
neural network. Scholbeck et al. [17] introduced forward marginal effects that unify and mixed-type
features as a general model-agnostic interpretation method for general non-linear machine learning
models. However, marginal effects in preference learning has not been investigated in these literature.

Adaptive experiment. Often framed as a sequential decision making or active learning problem
[23], adaptive experimentation utilizes already collected responses for informing experiment setup or
data acquisition in next iterations to maximize the usefulness of limited data. Adaptive experiment
has been adopted by domain scientists to accelerate scientific discovery. For instance, Bayesian opti-
mization via adaptive sample selection were successfully applied in material science for discovering
new materials [24] and clinical trials for finding maximum tolerated dose [25, 26]. Meanwhile, active
search was introduced for iterative design of virtual screening trials in chemoinformatics [27]. In
machine learning, Chen et al. [28] studied the pairwise ranking problem in crowd-sourcing setup with
online learning. Bıyık et al. [29] proposed an active preference-based learning based on information
gain for reward functions in robotics. However, previous adaptive designs in quantitative research
have been mainly focused on treatment selection in bandit settings [30–32], with limited attention to
marginal effect estimation particularly within the GP preference learning framework.

3 Backgrounds

Notations. Formally, let x ⊆ Rd denote all d-dimensional attributes of the full profile, and xl

represents the lth attribute and x−l represents the remaining attributes other than the lth. Furthermore,
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for pairwise comparison, let yij ∈ {0, 1} denote whether the left-side profile x(i) is preferred to the
right-side x(j), where yij = 1 if x(i) ≻ x(j) and yij = 0 otherwise. Here we focus on choice-based
conjoint analysis with pairwise comparison, as multiple choices could be easily transformed into
multiple comparison of pairs. For instance, x(i) is mostly preferred amongst {x(i),x(j),x(k)} is
equivalent to x(i) ≻ x(j) and x(i) ≻ x(k). Our notation could also account for score-based conjoint
experiments, where x(i) ≻ x(j) could indicate x(i) having higher score than x(j). Furthermore,
suppose all revealed preferences are collected into D = {(x(i),x(j)), yij}.

Marginal effects of discrete attributes. In conjoint analysis with factorial design, attributes
usually take discrete values of different levels xl = 1, . . . , Cl. For a target distribution of profiles
P , the marginal effects πl(a, b) of attribute xl from level a to b (1 ≤ a < b ≤ Cl) are captured by
the average marginal component effect (AMCE), defined as the difference in expected preferential
outcomes averaged over all the possible values of the remaining attributes x−l over P:

πl(a, b) = E
x
(i)
−l ,x

(j)∼P [yij | x
(i)
l = b]− E

x
(i)
−l ,x

(j)∼P [yij | x
(i)
l = a] (1)

Intuitively, πl(a, b) represents the increase in the probability of one profile being preferred if the lth
attribute were b instead of a for profile distribution P . With the conditionally independent assumption,
πl(a, b) can be estimated straight-forwardly using a difference-in-mean approach:

π̂l(a, b) =

∑
(x(i),x(j))∈D

yijI[x(i)
l = b]∑

(x(i),x(j))∈D
I[x(i)

l = b]
−

∑
(x(i),x(j))∈D

yijI[x(i)
l = a]∑

(x(i),x(j))∈D
I[x(i)

l = a]
(2)

However, this difference-in-mean approach for estimating marginal effects suffers from two issues.
First, generalization of this estimator for heterogeneous effect resulting from either background
characteristics or high-level interactions could get more complicated as calculation of multiple
differences is required. For instance, for obtaining interaction effects of between x

(i)
l and x

(i)
m from

level c to d in x
(i)
m , one needs to compute [π̂l(a, b)

∣∣
x
(i)
m =c

− π̂l(a, b)
∣∣
x
(i)
m =c

] − [π̂l(a, b)
∣∣
x
(i)
m =d

−
π̂l(a, b)

∣∣
x
(i)
m =d

] [1]. Second, in practice, continuous attributes are rarely repeated and thus often

need to be discretized into multiple levels; otherwise, each level x(i)
l = a would have very few

observations. However, this discretization is subject to the chosen cutoff points and may lead to an
oversimplification of the system, threatening the internal validity of marginal effect estimation.

4 Gaussian process conjoint analysis

We now introduce Gaussian process conjoint analysis (GPCA) for estimating marginal effects in
conjoint analysis of mixed-type attributes. We then derive marginal effects in GPCA and propose the
use of Gaussian mixture model for effectively approximating their distributions.

4.1 Preference learning with Gaussian process

Conjoint analysis can also be framed as a preference learning problem with a latent utility function
u(x) that takes mixed-type attributes. The preferential relation between x(i) and x(j) is then de-
termined by comparing their utilities u(x(i)) and u(x(j)). Through a sigmoid probabilistic model
σ(·), the probability of observed preference p(x(i) ≻ x(j)) = σ

(
u(x(i))− u(x(j))

)
could also allow

possible labeling error. Gaussian process (GP) preference learning places a GP prior on latent utility
u(x) ∼ GP(0,K) with RBF kernel K(x, x′) = exp(−∥x−x′∥2/2), and uses a cumulative standard
normal function for observation model p

(
x(i) ≻ x(j) | u(x(i)), u(x(j))

)
= Φ

(
u(x(i)) − u(x(j))

)
.

Although the posterior of u(x) is no longer analytical for GP classification, it could be approximated
using standard methods such as Laplace approximation and expectation propagation [33, 12].

Furthermore, the inferred latent utility posterior could also be used for prediction. For any new
pair of profiles (x

(i)
∗ ,x

(j)
∗ ), suppose their corresponding utility vector has been approximated by

a bivariate normal u∗ = [u(x
(i)
∗ ), u(x

(j)
∗ )]T ∼ N (µ∗,Σ∗). Let µ∗ = [µ

(i)
∗ , µ

(j)
∗ ]T and σ2

∗ =
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1 + [1,−1]Σ∗[1,−1]T , then the predictive probability has the following closed-form:

p(x
(i)
∗ ≻ x

(j)
∗ ) =

∫
Φ
(
u(x

(i)
∗ )− u(x

(j)
∗ )

)
p(u | D)du = Φ(

µ
(i)
∗ − µ

(j)
∗

σ∗
) (3)

Sometimes the predictive probability in Eq. (3) are directly defined on pairs of profiles (x(i),x(j))
using preference kernel. As the difference of two Gaussians remains Gaussian, a GP on u(x(i)) will
also induce a GP on u(x(i))− u(x(j)) but with a preference kernel Kpref

(
(x

(i)
1 ,x

(j)
1 ), (x

(i)
2 ,x

(j)
2 )

)
=

K(x
(i)
1 ,x

(i)
2 ) −K(x

(i)
1 ,x

(j)
2 ) −K(x

(i)
2 ,x

(j)
1 ) +K(x

(j)
1 ,x

(j)
2 ). We adopted this preference kernel

in our implementation of GPCA.

4.2 Marginal effects in GPCA

We follow the definition of AMCE in Eq. (1) but adapted to our GPCA framework. We exploit the
affine property of Gaussian processes to derive marginal effects of mixed-type attributes using first-
order gradients, where discrete attributes can be converted to continuous attributes with additional
dummy variables. Our discussion will focus on marginal effects of profile pairs (x(i),x(j)) on both
sides. Specifically, the gradient π

(
(x(i),x(j))

)
in probability of target profile x(i) being preferred to

opponent profile x(j) can be derived as:

π
(
(x(i),x(j))

)
=

∂

∂(x(i),x(j))
[p(x(i) ≻ x(j))] definition of AMCE (4)

=
∂

∂(x(i),x(j))
Eu|D

[
Φ
(
u(x(i))− u(x(j))

)]
averaged by u | D (5)

= Eu|D

[
ϕ
(
u(x(i))− u(x(j))

)(
∇u(x(i)),−∇u(x(j))

)]
chain rule (6)

Note that in the second step we swapped the order of expectation and differentiation. Intuitively,
the marginal effects of (x(i),x(j)) on the outcome space can be computed as the expected gradi-
ent

(
∇u(x(i)),−∇u(x(j))

)
in the latent utility space further weighted by the probability densi-

ties ϕ
(
u(x(i)) − u(x(j))

)
of a normal distribution at the latent utility distance u(x(i)) − u(x(j)).

For the sake of notation, further denote the one-sided marginal effect ϕ
(
u(x) − u(x(j))

)
∇u(x)

as g(x;x(j),D) where D indicates the posterior of utility on D. Since the normal pdf is sym-
metric, we could conveniently write the right-side gradient as −ϕ

(
u(x(i)) − u(x)

)
∇u(x) =

−ϕ
(
u(x) − u(x(i))

)
∇u(x) as −g(x;x(i),D) and hence marginal effect as π

(
(x(i),x(j))

)
=(

g(x(i);x(j),D),−g(x(j);x(i),D)
)
. Lastly, π

(
(x(i),x(j))

)
captures the concatenated multi-variate

distribution of marginal effects for the entire profile vectors, and could be easily projected along any
unit vector êl to obtain the component effects analogous to Eq. (1). Intuitively, component effects
represent the attribute-specific effects on preferences, averaged over profile population:

πl(x
(i)
l ) =

∑
(x

(i)
−l ,x

(j))∼P

⟨π
(
(x(i),x(j))

)
, êl⟩ (7)

4.3 Gaussian mixture approximation of marginal effects

As π
(
(x(i),x(j))

)
involves taking weighted averages of utility gradient vector ∇u(x) over utility

posterior u | D, we propose the use of Gaussian mixture model (GMM) to approximate its distribution.
As the gradient of a GP is still a GP, we can first write the joint distribution of utility u(·) | D and
utility gradient ∇u | D under utility posterior GP

(
µu|D(x),Ku|D(x,x

′)
)

on D as:[
u | D
∇u | D

]
∼ GP

( [ µu|D
∇µu|D

]
,

[
Ku|D ∇Ku|D

T

∇Ku|D ∇2Ku|D

] )
(8)

where ∇µu|D = ∂µu|D(x)/∂x is the first-order derivative of the posterior mean, ∇Ku|D =

∂Ku|D(x,x
′)/∂x is the first-order derivative of the posterior covariance and ∇2Ku|D =

∂2Ku|D(x,x
′)/∂x∂x′ is its second-order mixed derivatives.
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Figure 1: Visualization of the proposed GMM for approximating one-side marginal effect. Left figure shows our
GMM approximation of the one-side marginal effect using 5 sampling points, and right figure shows 9 possible
true effects obtained by numerical sampling. Darker colors indicate components with higher weights in the GMM

and numerical samples closer to the one-side marginal effect posterior mode.

Although the joint distribution in Eq. (8) is Gaussian, the one-sided marginal effect g(x;x(j),D)
is not because it involves the product of a multivariate Gaussian ∇u(x) | D and a non-linear
transformation ϕ(·) of an univariate Gaussian u(x) − u(x(j)) | D. Therefore, we use a Gaussian
mixture model (GMM) to approximate g(x;x(j),D). Each component of the GMM is formed by
scaling the multivariate Gaussian with the transformed values of quadrature points of the univariate
Gaussian determined by Gauss-Hermite quadrature. Let N be the number of points in the quadrature,
kr be the roots of the physicists’ version of the Hermite polynomial HN (k) and ωr = 2N−1N !

N2[HN−1(kr)]2

be the weights of each component [34]. We could then approximate g(x;x(j),D) as:

g(x;x(j),D) ≈
N∑
r=1

ωrϕ
(
f̄r(x)

)
◦ N

(
∇µu|D(x),∇2Ku|D(x,x)

)
(9)

=

N∑
r=1

ωrN
(
ϕ
(
f̄r(x)

)
◦ ∇µu|D(x), ϕ

(
f̄r(x)

)
ϕ
(
f̄r(x)

)T ◦ ∇2Ku|D(x,x)
)

(10)

where f̄r(x) =
√
2[σ2

u|D(x) + σ2
u|D(x

(j))]
1/2

kr + [µu|D(x)− µu|D(x
(j))] are locations of mixture

components defined on the sample point krs, and ◦ denotes the Hadamard (element-wise) product.
Figure 1 shows the visualization of the proposed GMM for approximating one-side marginal effect.
The left-hand side shows our GMM approximation of the one-sided marginal effect using 5 sampling
points, and the right-hand side shows 9 possible true effects obtained by numerical sampling. Darker
colors indicate components with higher weights in the GMM and numerical samples closer to the
one-side marginal effect posterior mode. We found in experiments with just N = 10 quadrature
points, our GMM was able to effectively approximate the true distribution of g(x;x(j),D).

5 Adaptive experimentation in GPCA

We investigate the use of adaptive experimentation with GPCA to acquire the most informative pairs
of profiles for estimating marginal effects. Informed by the posterior belief on the latent utility,
adaptive experimentation may efficiently explore attributes whose marginal effects on preferences
are less certain. To this end, we can determine the next pairs of profiles to compare by maximizing
an acquisition function (x

(i)
∗ ,x

(j)
∗ ) = max(x(i),x(j))∼P α

(
(x(i),x(j));D

)
. For simplicity, let A =

u(x(i))−u(x(j)) and B = Ku|D(x
(i),x(i))+Ku|D(x

(j),x(j)). We consider the following policies:

1. Upper confident bound on predictive preference (UCB) maximizes the 95% confidence in-
terval of preference prediction: α

(
(x(i),x(j));D

)
=

∣∣A+ 1.96
√
B
∣∣.

2. Differential entropy of the latent utility (DE-U) maximizes the log variance of utility poste-
rior: α

(
(x(i),x(j));D

)
= 1

2 log(2πB) + 1
2 .

3. Differential entropy of the marginal effects (DE-ME) maximizes the log variance of
marginal effects approximated using our proposed GMM in Eq. (9):

α
(
(x(i),x(j));D

)
= log

∣∣∣ ∑
k∈{i,j}

N∑
r=1

ωrϕ
(
f̄r(x

(k))
)
ϕ
(
f̄r(x

(k))
)T ◦∇2Ku|D(x

(k),x(k))
∣∣∣.
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Figure 2: A 1-d example for illustrating acquisition functions of UCB and BALD. Upper panel shows the
observed data with model posterior (left) and current marginal effect estimation (right). Lower panel shows
acquisition value of UCB and BALD for selecting new profile, where the marginal effect variance at UCB’s
selection is low and that at BALD’s selection is high. While UCB tends to exploit and optimize profile preference,
BALD tends to explore and minimize model uncertainty.

4. Bayesian active learning by disagreement (BALD) aims to maximize the mutual information
between the utility model and predictive preferences:

α
(
(x(i),x(j));D

)
= I(yij , u;x

(i),x(j),D).

With entropy function h(p) = −p log(p)−(1−p) log(1−p) and constant C =
√
π log(2)/2,

the approximated mutual information is:

α
(
(x(i),x(j));D

)
≈ h

(
Φ
( A√

B + 1

))
− C√

B + C2
exp

(
− A2

2(B + C2)

)
.

5. Random sampling (UNIFORM) simply selects pairs uniformly at random from P .

While UCB emphasizes exploiting current belief to find the most preferred profile, DE-U, DE-ME
and BALD focus on exploring the profile space by reducing model uncertainty on either latent
utility, marginal effects or the predictive preferences. Figure 2 shows a 1-d example for illustrating
acquisition functions of UCB and BALD. Upper panel shows the observed data with model posterior
(left) and current marginal effect estimation (right). Lower panel shows acquisition value of UCB and
BALD for selecting new profile, where the marginal effect variance at UCB’s selection is low and that
at BALD’s selection is high. This demonstrates that while UCB tends to exploit and optimize profile
preference, BALD tends to explore and minimize model uncertainty.

6 Experiments

We first evaluate the estimated marginal effects by GPCA using synthetic data when the functional
relations are known and could be computed analytically, and then consider adaptive experimentation
of GPCA with several active learning policies. We also apply GPCA to two real-world data.

Data generating process. Following the simulation specification in Chu and Ghahramani [12], we
consider two generating processes with discrete (2DPLANE) and continuous (FRIEDMAN) attributes.1
The 2DPLANE dataset has 5 discrete attributes where x1 ∈ {−1, 1} and x2, . . . , x5 ∈ {−1, 0, 1},
with a piecewise linear utility u(x) = 1 + 2x2 − x3 if x1 = −1 and u(x) = 1+ x4 − 2x5 if x1 = 1.
The FRIEDMAN dataset has 3 continuous attributes where x1, . . . , x3 ∼ [0, 1] with a non-linear utility
u(x) = 3 sin(πx1x2) + 6(x3 − 0.5)2. We randomly sample 1000 pairs of profiles in each dataset
and set yij = 1 with probability of Φ

(
u(x(i) − u(x(j))

)
and yij = 0 otherwise.

6.1 Accuracy of marginal effect estimation

Evaluation metrics and baselines. We consider three metrics for evaluation of both marginal effects
and component effects: (1) the RMSE of the estimated effects, (2) the correlation (COR) between the
estimated effects and true effects, and (3) the log likelihood (LL) of the estimated effects. We also
compare our proposed GMM approximation for marginal effects in GPCA to several baselines: (1)

1See https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html for details.
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Table 1: Averaged performance and standard deviations of both marginal and component effects from our
GP-GMM estimator and baselines on the 2DPLANE and FRIEDMAN datasets. Models that perform statistically
significantly better than all the others in paired t-tests are indicated in bold, while methods performing comparably
to best models are indicated in italics.

DATASET ESTIMATOR
Marginal effects Component effects

RMSE ↓ COR ↑ LL ↑ RMSE ↓ COR ↑ LL ↑

2DPLANE

DIM 0.712±0.022 0.013±0.003 −2.137±0.115 0.109±0.005 0.341±0.029 0.494±0.117
LM-GMM 0.213±0.001 0.340±0.005 −0.238±0.145 0.069±0.002 0.475±0.019 −0.778±0.157
GP-MAP 0.175±0.002 0.732±0.007 −3.893±0.863 0.052±0.002 0.611±0.024 1.401±0.177
GP-GMM 0.135±0.002 0.803±0.007 0.563±0.023 0.044±0.001 0.616±0.025 2.000±0.082

FRIEDMAN

DIM 0.910±0.008 0.024±0.005 −9.658±0.392 0.150±0.010 0.944±0.017 −1.824±0.480
LM-GMM 0.845±0.010 0.328±0.007 −1.001±0.271 0.078±0.005 0.980±0.005 0.503±0.245
GP-MAP 0.510±0.008 0.830±0.006 −3.869±0.530 0.042±0.003 0.995±0.001 1.680±0.045
GP-GMM 0.478±0.008 0.847±0.005 −0.213±0.065 0.042±0.003 0.995±0.001 1.689±0.044

the non-parametric diff-in-mean estimator (DIM) [1], where the continuous attributes in FRIEDMAN
are first discretized by splitting into equally-spanned intervals, (2) the standard preference learning
method with linear utility (LM-GMM) [9, 10, 8, 11], and (3) an ablated GPCA method (GP-MAP) but
with MAP estimation of marginal effects.

Results. We repeat our simulation with 25 different random seeds using 300 Intel Xeon 2680 CPUs.
Table 1 shows the averaged performance and standard deviations (STDs) of both marginal effects
π
(
(x(i),x(j))

)
and component effects πl(x

(i)
l ) defined in Eq. (4 and 7) from our GP-GMM estimator

and baselines on the 2DPLANE and FRIEDMAN datasets. Models that perform statistically significantly
better than all the other models in paired t-tests are indicated in bold, while methods performing
comparably to the best method are indicated in italics. Our proposed GP-GMM leads to more precise
effect estimation with lower RMSE and higher COR/LL for both marginal and component effects.
In addition, Table 2 shows the averaged accuracy and STDs of preference prediction from GPCA
and baselines on both synthetic datasets. GPCA has the best prediction for capturing the underlying
preferential relations in the system.

Table 2: Averaged accuracy and STDs of preference prediction from GPCA and baselines on both synthetic
datasets. GPCA has the best prediction for capturing the underlying preferential relations in the system.

DATASET
2DPLANE FRIEDMAN

DIM SVM GPCA DIM SVM GPCA

ACC 0.696±0.006 0.824±0.003 0.986±0.002 0.785±0.006 0.795±0.005 0.956±0.002

6.2 Improved efficiency from adaptive experimentation

We then investigate adaptive experimentation in GPCA for increasing efficiency of effect estimation.
We consider various policies: (1) UCB popular in multi-arm bandit setting [35], (2) DE-U and DE-ME
for active learning based on differential entropy [36–38], (3) BALD in Bayesian active learning for
model uncertainty reduction [39] and (4) UNIFORM design in non-parametric conjoint analysis [1, 2].

Experimental details. We initialize all the policies with the same 25 profile pairs from the 1000
candidate pairs, and update model posterior in GPCA once new preferences are revealed. Since the
sampled profile distributions from each policy differ from each other due to their adaptive essence,
we estimate the marginal and component effects w.r.t the same target profile distribution to ensure
comparability. Specifically, we train our GPCA model on revealed preferences from profile pairs
acquired so far and estimate both effects using GP-GMM at all the 1000 pairs.

Results. Figure 3 shows box plots of averaged RMSE, COR and LL and their STDs of marginal
(top panel) and component (bottom panel) effects with adaptive experimentation under different
acquisition policies. Sample size range from 50 to 150, and performance metrics are reported every
other 25 acquisitions. Overall BALD (blue) outperforms the rest of policies including UNIFORM and
UCB, indicating higher efficiency for effect estimation when the acquisition is designed to reduce
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Figure 3: Box plots of averaged RMSE, COR and LL and their STDs of marginal (top panel) and
component (bottom panel) effects with adaptive experimentation under different acquisition policies.
Sample size range from 50 to 150, and performance metrics are reported every other 25 acquisitions.
Overall BALD (blue) outperforms the rest of policies including UNIFORM and UCB, indicating higher
efficiency for effect estimation when the acquisition is designed to reduce model uncertainty.

model uncertainty. Morever, UCB (forest green) has overall the worst performance in estimating both
marginal and component effects as it solely reinforces current belief on the probability of preference.

Preference prediction. Besides estimation of marginal effects, we also examine the model quality of
GPCA by evaluating the prediction accuracy of unrevealed preferences among the not acquired profile
pairs. Figure 4 shows the averaged accuracy and STDs of preference prediction by various policies.
With as few as 50 data points, GPCA manages to predict at least 80% of the unrevealed preference
and 95% when 150 data points are adaptively acquired by BALD.
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Figure 4: Averaged accuracy and STDs of preference prediction by various policies for simulated data.
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6.3 Applications

Data. We apply GPCA to two real-world conjoint experiments: U.S. citizens’ preferences across
presidential candidates and attitudes toward immigrants containing 1733 and 6980 pairwise compar-
isons [1, 40]. Attributes in the candidate experiment include various aspects of candidates’ personal
background, demographics and issue positions, such as religion, education, profession, income
and race, while attributes in the immigrant experiment include employment plans, job experience,
language skills, country of origin, reasons for applying and so on.

Table 3: List of attributes with estimated component effects by GPCA and DIM used in the original studies,
grouped by negative, null and positive effects.

DATASET
GPCA

DIM
NEG NULL POS

Candidate

NEG
Evangelical protestant,

Mormon, car dealer,Age 68
Jewish,Catholic,high school teacher,
farmer,Income 210K,Black,Age 60 —

NULL — Mainline protestant,Lawyer,doctor,female,
Income 54K,Hispanic,Asian American,Age 52 Baptist college,Income 65K

POS — Income 92K,5.1M,Caucasian,
Native American,Age 45,75

Military,community college,
state university,Ivy League

Immigrant

NEG
India,China,will look for work,

interview with employer,once as tourist
Broken English,Used interpreter,Germany,

France,Mexico,Philippines,Poland,Iraq —

NULL — Mainline protestant,Lawyer,doctor,female,
Income 54K,Hispanic,Asian American,Age 52 —

POS — Male,Somalia,financial analyst,
waiter,child care provider

college degree,graduate degree,teacher,nurse,doctor
computer programmer,research scientist,escape persecution

Results. We run GPCA using all samples in both datasets. Table 3 shows the list of attributes with
estimated component effects by GPCA and DIM used in original studies grouped by negative, null and
positive effects. Overall, component effect estimation by GPCA is more reasonable. For example, in
the candidate experiment GPCA found negative effects of Black candidates working as high school
teachers or farmers on the probability of becoming U.S. presidents and positive effects of Caucasian
candidates with 5.1M or more annual income, while DIM found no effects for any of these attributes.
In the immigrant experiment, GPCA found negative effects of Iraqi applicants with broken English
on the probability of immigration approval and positive effects of applicants working as financial
analysts, while DIM found no effects. Figure 5 shows the averaged accuracy and STDs of preference
prediction by various policies for real data with sample size varying from 100 to 800, where BALD
has better prediction of unrevealed preferences than randomized policy.
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Figure 5: Averaged accuracy and STDs of preference prediction by various policies for real data, with sample
size varying from 100 to 800. BALD has better prediction of unrevealed preferences than randomized policy.

7 Conclusion

We introduce GPCA, a Gaussian Process conjoint analysis model for estimating marginal effects
in choice-based conjoint experiments. GPCA derives marginal effects as first-order derivatives and
approximates their distributions using Gaussian mixtures, enhancing precision and efficiency in
effect estimation aided by adaptive experimentation. GPCA has the potential of advancing causal
inference in adaptive conjoint experiments. As distributional shifts are inevitable between adaptive
acquired samples and uniformly randomized samples, directly interpreting marginal effects from
adaptive samples in GPCA as causal effects may not be appropriate. Future research may explore
methods such as inverse propensity weighting or doubly robust strategy for causal inference or feature
interpretability in GPCA with adaptive experimentation.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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• The assumptions made should be given (e.g., Normally distributed errors).
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• The conference expects that many papers will be foundational research and not tied
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necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in this paper are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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